Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 26 - 50 of 117 results
26.

Precise modulation of embryonic development through optogenetics.

blue cyan violet BLUF domains Cryptochromes Fluorescent proteins LOV domains Review
Genesis, 7 Dec 2022 DOI: 10.1002/dvg.23505 Link to full text
Abstract: The past decade has witnessed enormous progress in optogenetics, which uses photo-sensitive proteins to control signal transduction in live cells and animals. The ever-increasing amount of optogenetic tools, however, could overwhelm the selection of appropriate optogenetic strategies. In this work, we summarize recent progress in this emerging field and highlight the application of opsin-free optogenetics in studying embryonic development, focusing on new insights gained into optical induction of morphogenesis, cell polarity, cell fate determination, tissue differentiation, neuronal regeneration, synaptic plasticity, and removal of cells during development.
27.

WNK kinases sense molecular crowding and rescue cell volume via phase separation.

blue CRY2olig HEK293 Organelle manipulation
Cell, 31 Oct 2022 DOI: 10.1016/j.cell.2022.09.042 Link to full text
Abstract: When challenged by hypertonicity, dehydrated cells must recover their volume to survive. This process requires the phosphorylation-dependent regulation of SLC12 cation chloride transporters by WNK kinases, but how these kinases are activated by cell shrinkage remains unknown. Within seconds of cell exposure to hypertonicity, WNK1 concentrates into membraneless condensates, initiating a phosphorylation-dependent signal that drives net ion influx via the SLC12 cotransporters to restore cell volume. WNK1 condensate formation is driven by its intrinsically disordered C terminus, whose evolutionarily conserved signatures are necessary for efficient phase separation and volume recovery. This disorder-encoded phase behavior occurs within physiological constraints and is activated in vivo by molecular crowding rather than changes in cell size. This allows kinase activity despite an inhibitory ionic milieu and permits cell volume recovery through condensate-mediated signal amplification. Thus, WNK kinases are physiological crowding sensors that phase separate to coordinate a cell volume rescue response.
28.

Ligand-independent receptor clustering modulates transmembrane signaling: a new paradigm.

blue red Cryptochromes LOV domains Phytochromes Review
Trends Biochem Sci, 14 Sep 2022 DOI: 10.1016/j.tibs.2022.08.002 Link to full text
Abstract: Cell-surface receptors mediate communication between cells and their environment. Lateral membrane organization and dynamic receptor cluster formation are fundamental in signal transduction and cell signaling. However, it is not yet fully understood how receptor clustering modulates a wide variety of physiologically relevant processes. Recent growing evidence indicates that biological responses triggered by membrane receptors can be modulated even in the absence of the natural receptor ligand. We review the most recent findings on how ligand-independent receptor clustering can regulate transmembrane signaling. We discuss the latest technologies to control receptor assembly, such as DNA nanotechnology, optogenetics, and optochemistry, focusing on the biological relevance and unraveling of ligand-independent signaling.
29.

Optogenetic control of GGGGCC repeat-containing RNA phase transition.

blue CRY2olig HEK293T Organelle manipulation
Fundam res, 9 Sep 2022 DOI: 10.1016/j.fmre.2022.09.001 Link to full text
Abstract: The GGGGCC (G4C2) hexanucleotide repeat expansion in the C9ORF72 gene is a major cause of both hereditary amyotrophic lateral sclerosis and familial frontotemporal dementia. Recent studies have shown that G4C2 hexanucleotide repeat-containing RNA transcripts ((G4C2)n RNA) could go through liquid-liquid phase separation to form RNA foci, which may elicit neurodegeneration. However, the direct causality between these abnormal RNA foci and neuronal toxicity remains to be demonstrated. Here we introduce an optogenetic control system that can induce the assembly and phase separation of (G4C2)n RNA foci with blue light illumination in human cells, by fusing a specific (G4C2)n RNA binding protein as the linker domain to Cry2, a protein that oligomerizes in response to blue light. Our results demonstrate that a higher number of G4C2 repeats have the potential to be induced into more RNA foci in the cells. Both spontaneous and induced RNA foci display liquid-like properties according to FRAP measurements. Computational simulation shows strong consistency with the experimental results and supports the effect of our system to promote the propensity of (G4C2)n RNA towards phase separation. This system can thus be used to investigate whether (G4C2)n RNA foci would disrupt normal cellular processes and lead to pathological phenotypes relevant to repeat expansion disorders.
30.

Optogenetic manipulation of cell migration with high spatiotemporal resolution using lattice lightsheet microscopy.

blue CRY2/CIB1 CRY2olig U-2 OS Control of cytoskeleton / cell motility / cell shape
Commun Biol, 26 Aug 2022 DOI: 10.1038/s42003-022-03835-6 Link to full text
Abstract: Lattice lightsheet microscopy (LLSM) featuring three-dimensional recording is improved to manipulate cellular behavior with subcellular resolution through optogenetic activation (optoLLSM). A position-controllable Bessel beam as a stimulation source is integrated into the LLSM to achieve spatiotemporal photoactivation by changing the spatial light modulator (SLM) patterns. Unlike the point-scanning in a confocal microscope, the lattice beams are capable of wide-field optical sectioning for optogenetic activation along the Bessel beam path.We show that the energy power required for optogenetic activations is lower than 1 nW (or 24 mWcm-2) for time-lapses of CRY2olig clustering proteins, and membrane ruffling can be induced at different locations within a cell with subcellular resolution through light-triggered recruitment of phosphoinositide 3-kinase. Moreover, with the epidermal growth factor receptor (EGFR) fused with CRY2olig, we are able to demonstrate guided cell migration using optogenetic stimulation for up to 6 h, where 463 imaging volumes are collected, without noticeable cellular damages.
31.

Engineering of optogenetic devices for biomedical applications in mammalian synthetic biology.

blue near-infrared red UV violet BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Eng Biol, 7 Jul 2022 DOI: 10.1049/enb2.12022 Link to full text
Abstract: Gene- and cell-based therapies are the next frontiers in the field of medicine. Both are transformative and innovative therapies; however, a lack of safety data limits the translation of such promising technologies to the clinic. Improving the safety and promoting the clinical translation of these therapies can be achieved by tightly regulating the release and delivery of therapeutic outputs. In recent years, the rapid development of optogenetic technology has provided opportunities to develop precision-controlled gene- and cell-based therapies, in which light is introduced to precisely and spatiotemporally manipulate the behaviour of genes and cells. This review focuses on the development of optogenetic tools and their applications in biomedicine, including photoactivated genome engineering and phototherapy for diabetes and tumours. The prospects and challenges of optogenetic tools for future clinical applications are also discussed.
32.

Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing.

blue CRY2olig HEK293 Organelle manipulation
Nat Commun, 25 Jun 2022 DOI: 10.1038/s41467-022-31220-8 Link to full text
Abstract: The diverse functions of WASP, the deficiency of which causes Wiskott-Aldrich syndrome (WAS), remain poorly defined. We generated three isogenic WAS models using patient induced pluripotent stem cells and genome editing. These models recapitulated WAS phenotypes and revealed that WASP deficiency causes an upregulation of numerous RNA splicing factors and widespread altered splicing. Loss of WASP binding to splicing factor gene promoters frequently leads to aberrant epigenetic activation. WASP interacts with dozens of nuclear speckle constituents and constrains SRSF2 mobility. Using an optogenetic system, we showed that WASP forms phase-separated condensates that encompasses SRSF2, nascent RNA and active Pol II. The role of WASP in gene body condensates is corroborated by ChIPseq and RIPseq. Together our data reveal that WASP is a nexus regulator of RNA splicing that controls the transcription of splicing factors epigenetically and the dynamics of the splicing machinery through liquid-liquid phase separation.
33.

Optogenetics for transcriptional programming and genetic engineering.

blue cyan near-infrared red UV violet Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Trends Genet, 20 Jun 2022 DOI: 10.1016/j.tig.2022.05.014 Link to full text
Abstract: Optogenetics combines genetics and biophotonics to enable noninvasive control of biological processes with high spatiotemporal precision. When engineered into protein machineries that govern the cellular information flow as depicted in the central dogma, multiple genetically encoded non-opsin photosensory modules have been harnessed to modulate gene transcription, DNA or RNA modifications, DNA recombination, and genome engineering by utilizing photons emitting in the wide range of 200-1000 nm. We present herein generally applicable modular strategies for optogenetic engineering and highlight latest advances in the broad applications of opsin-free optogenetics to program transcriptional outputs and precisely manipulate the mammalian genome, epigenome, and epitranscriptome. We also discuss current challenges and future trends in opsin-free optogenetics, which has been rapidly evolving to meet the growing needs in synthetic biology and genetics research.
34.

The expanding role of split protein complementation in opsin-free optogenetics.

blue green near-infrared red violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Curr Opin Pharmacol, 21 May 2022 DOI: 10.1016/j.coph.2022.102236 Link to full text
Abstract: A comprehensive understanding of signaling mechanisms helps interpret fundamental biological processes and restore cell behavior from pathological conditions. Signaling outcome depends not only on the activity of each signaling component but also on their dynamic interaction in time and space, which remains challenging to probe by biochemical and cell-based assays. Opsin-based optogenetics has transformed neural science research with its spatiotemporal modulation of the activity of excitable cells. Motivated by this advantage, opsin-free optogenetics extends the power of light to a larger spectrum of signaling molecules. This review summarizes commonly used opsin-free optogenetic strategies, presents a historical overview of split protein complementation, and highlights the adaptation of split protein recombination as optogenetic sensors and actuators.
35.

Killing cells using light (activated) sabers.

blue Cryptochromes Review
J Cell Biol, 16 May 2022 DOI: 10.1083/jcb.202205018 Link to full text
Abstract: Many types of regulated cell death exist, however the non-cell autonomous effects of specific forms of cell death remain poorly understood. Addressing this, Shkarina et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202109038) describe an optogenetic method to activate distinct modes of cell death in select cells.
36.

Engineering Light-Control in Biology.

blue cyan green near-infrared red UV BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Front Bioeng Biotechnol, 28 Apr 2022 DOI: 10.3389/fbioe.2022.901300 Link to full text
Abstract: Unraveling the transformative power of optogenetics in biology requires sophisticated engineering for the creation and optimization of light-regulatable proteins. In addition, diverse strategies have been used for the tuning of these light-sensitive regulators. This review highlights different protein engineering and synthetic biology approaches, which might aid in the development and optimization of novel optogenetic proteins (Opto-proteins). Focusing on non-neuronal optogenetics, chromophore availability, general strategies for creating light-controllable functions, modification of the photosensitive domains and their fusion to effector domains, as well as tuning concepts for Opto-proteins are discussed. Thus, this review shall not serve as an encyclopedic summary of light-sensitive regulators but aims at discussing important aspects for the engineering of light-controllable proteins through selected examples.
37.

PPARγ phase separates with RXRα at PPREs to regulate target gene expression.

blue CRY2olig HEK293T NIH/3T3 Organelle manipulation
Cell Discov, 26 Apr 2022 DOI: 10.1038/s41421-022-00388-0 Link to full text
Abstract: Peroxisome proliferator-activated receptor (PPAR)-γ is a key transcription activator controlling adipogenesis and lipid metabolism. PPARγ binds PPAR response elements (PPREs) as the obligate heterodimer with retinoid X receptor (RXR) α, but exactly how PPARγ orchestrates the transcriptional response is unknown. This study demonstrates that PPARγ forms phase-separated droplets in vitro and solid-like nuclear condensates in cell, which is intriguingly mediated by its DNA binding domain characterized by the zinc finger motif. Furthermore, PPARγ forms nuclear condensates at PPREs sites through phase separation to compartmentalize its heterodimer partner RXRα to initiate PPARγ-specific transcriptional activation. Finally, using an optogenetic approach, the enforced formation of PPARγ/RXRα condensates leads to preferential enrichment at PPREs sites and significantly promotes the expression of PPARγ target genes. These results define a novel mechanism by which PPARγ engages the phase separation principles for efficient and specific transcriptional activation.
38.

Optogenetic activators of apoptosis, necroptosis, and pyroptosis.

blue CRY2olig Caco-2 HaCaT HEK293T HeLa MCF7 RAW264.7 zebrafish in vivo Cell death
J Cell Biol, 14 Apr 2022 DOI: 10.1083/jcb.202109038 Link to full text
Abstract: Targeted and specific induction of cell death in an individual or groups of cells hold the potential for new insights into the response of tissues or organisms to different forms of death. Here, we report the development of optogenetically controlled cell death effectors (optoCDEs), a novel class of optogenetic tools that enables light-mediated induction of three types of programmed cell death (PCD)—apoptosis, pyroptosis, and necroptosis—using Arabidopsis thaliana photosensitive protein Cryptochrome-2. OptoCDEs enable a rapid and highly specific induction of PCD in human, mouse, and zebrafish cells and are suitable for a wide range of applications, such as sub-lethal cell death induction or precise elimination of single cells or cell populations in vitro and in vivo. As the proof-of-concept, we utilize optoCDEs to assess the differences in neighboring cell responses to apoptotic or necrotic PCD, revealing a new role for shingosine-1-phosphate signaling in regulating the efferocytosis of the apoptotic cell by epithelia.
39.

Optogenetic Phase Transition of TDP-43 in Spinal Motor Neurons of Zebrafish Larvae.

blue CRY2olig zebrafish in vivo
J Vis Exp, 25 Feb 2022 DOI: 10.3791/62932 Link to full text
Abstract: Abnormal protein aggregation and selective neuronal vulnerability are two major hallmarks of neurodegenerative diseases. Causal relationships between these features may be interrogated by controlling the phase transition of a disease-associated protein in a vulnerable cell type, although this experimental approach has been limited so far. Here, we describe a protocol to induce phase transition of the RNA/DNA-binding protein TDP-43 in spinal motor neurons of zebrafish larvae for modeling cytoplasmic aggregation of TDP-43 occurring in degenerating motor neurons in amyotrophic lateral sclerosis (ALS). We describe a bacterial artificial chromosome (BAC)-based genetic method to deliver an optogenetic TDP-43 variant selectively to spinal motor neurons of zebrafish. The high translucency of zebrafish larvae allows for the phase transition of the optogenetic TDP-43 in the spinal motor neurons by a simple external illumination using a light-emitting diode (LED) against unrestrained fish. We also present a basic workflow of live imaging of the zebrafish spinal motor neurons and image analysis with freely available Fiji/ImageJ software to characterize responses of the optogenetic TDP-43 to the light illumination. This protocol enables the characterization of TDP-43 phase transition and aggregate formation in an ALS-vulnerable cellular environment, which should facilitate an investigation of its cellular and behavioral consequences.
40.

Optophysiology: Illuminating cell physiology with optogenetics.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Physiol Rev, 24 Jan 2022 DOI: 10.1152/physrev.00021.2021 Link to full text
Abstract: Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology") and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
41.

Optogenetic approaches in biotechnology and biomaterials.

blue cyan green near-infrared red violet BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes Review
Trends Biotechnol, 11 Jan 2022 DOI: 10.1016/j.tibtech.2021.12.007 Link to full text
Abstract: Advances in genetic engineering, combined with the development of optical technologies, have allowed optogenetics to broaden its area of possible applications in recent years. However, the application of optogenetic tools in industry, including biotechnology and the production of biomaterials, is still limited, because each practical task requires the engineering of a specific optogenetic system. In this review, we discuss recent advances in the use of optogenetic tools in the production of biofuels and valuable chemicals, the synthesis of biomedical and polymer materials, and plant agrobiology. We also offer a comprehensive analysis of the properties and industrial applicability of light-controlled and other smart biomaterials. These data allow us to outline the prospects for the future use of optogenetics in bioindustry.
42.

Optogenetic activation of intracellular signaling based on light-inducible protein-protein homo-interactions.

blue red Cryptochromes LOV domains Phytochromes Review
Neural Regen Res, Jan 2022 DOI: 10.4103/1673-5374.314293 Link to full text
Abstract: Dynamic protein-protein interactions are essential for proper cell functioning. Homo-interaction events-physical interactions between the same type of proteins-represent a pivotal subset of protein-protein interactions that are widely exploited in activating intracellular signaling pathways. Capacities of modulating protein-protein interactions with spatial and temporal resolution are greatly desired to decipher the dynamic nature of signal transduction mechanisms. The emerging optogenetic technology, based on genetically encoded light-sensitive proteins, provides promising opportunities to dissect the highly complex signaling networks with unmatched specificity and spatiotemporal precision. Here we review recent achievements in the development of optogenetic tools enabling light-inducible protein-protein homo-interactions and their applications in optical activation of signaling pathways.
43.

Directed evolution approaches for optogenetic tool development.

blue green near-infrared red Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes Review
Biochem Soc Trans, 17 Dec 2021 DOI: 10.1042/bst20210700 Link to full text
Abstract: Photoswitchable proteins enable specific molecular events occurring in complex biological settings to be probed in a rapid and reversible fashion. Recent progress in the development of photoswitchable proteins as components of optogenetic tools has been greatly facilitated by directed evolution approaches in vitro, in bacteria, or in yeast. We review these developments and suggest future directions for this rapidly advancing field.
44.

CeLINC, a fluorescence-based protein-protein interaction assay in Caenorhabditis elegans.

blue CRY2/CIB1 CRY2olig C. elegans in vivo Organelle manipulation
Genetics, 10 Dec 2021 DOI: 10.1093/genetics/iyab163 Link to full text
Abstract: Interactions among proteins are fundamental for life and determining whether two particular proteins physically interact can be essential for fully understanding a protein's function. We present Caenorhabditis elegans light-induced coclustering (CeLINC), an optical binary protein-protein interaction assay to determine whether two proteins interact in vivo. Based on CRY2/CIB1 light-dependent oligomerization, CeLINC can rapidly and unambiguously identify protein-protein interactions between pairs of fluorescently tagged proteins. A fluorescently tagged bait protein is captured using a nanobody directed against the fluorescent protein (GFP or mCherry) and brought into artificial clusters within the cell. Colocalization of a fluorescently tagged prey protein in the cluster indicates a protein interaction. We tested the system with an array of positive and negative reference protein pairs. Assay performance was extremely robust with no false positives detected in the negative reference pairs. We then used the system to test for interactions among apical and basolateral polarity regulators. We confirmed interactions seen between PAR-6, PKC-3, and PAR-3, but observed no physical interactions among the basolateral Scribble module proteins LET-413, DLG-1, and LGL-1. We have generated a plasmid toolkit that allows use of custom promoters or CRY2 variants to promote flexibility of the system. The CeLINC assay is a powerful and rapid technique that can be widely applied in C. elegans due to the universal plasmids that can be used with existing fluorescently tagged strains without need for additional cloning or genetic modification of the genome.
45.

Optogenetic strategies for the control of gene expression in yeasts.

blue green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes LOV domains Phytochromes UV receptors Review
Biotechnol Adv, 28 Sep 2021 DOI: 10.1016/j.biotechadv.2021.107839 Link to full text
Abstract: Optogenetics involves the use of light to control cellular functions and has become increasingly popular in various areas of research, especially in the precise control of gene expression. While this technology is already well established in neurobiology and basic research, its use in bioprocess development is still emerging. Some optogenetic switches have been implemented in yeasts for different purposes, taking advantage of a wide repertoire of biological parts and relatively easy genetic manipulation. In this review, we cover the current strategies used for the construction of yeast strains to be used in optogenetically controlled protein or metabolite production, as well as the operational aspects to be considered for the scale-up of this type of process. Finally, we discuss the main applications of optogenetic switches in yeast systems and highlight the main advantages and challenges of bioprocess development considering future directions for this field.
46.

Activation of endoplasmic reticulum stress via clustering of inner nuclear membrane proteins.

blue CRY2olig HEK293FT U-2 OS Signaling cascade control
bioRxiv, 14 Sep 2021 DOI: 10.1101/2021.09.14.460295 Link to full text
Abstract: One of the major cellular mechanisms to ensure protein homeostasis is the endoplasmic reticulum (ER) stress response. This pathway is typically triggered by accumulation of misfolded proteins in the ER lumen. Here we describe activation of ER stress via protein aggregation in the cell nucleus. We find in the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS) activation of ER stress due to the aggregation of the diseases-causing progerin protein at the nuclear envelope. The presence of nucleoplasmic protein aggregates is sensed and signaled to the ER lumen via immobilization and clustering of theinner nuclear membrane protein SUN2, leading to activation of the Unfolded Protein Response (UPR). These results identify a nuclear trigger of ER stress and they provide insight into the molecular disease mechanisms of HGPS.
47.

Applications of Upconversion Nanoparticles in Cellular Optogenetics.

blue cyan green Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Review
Acta Biomater, 27 Aug 2021 DOI: 10.1016/j.actbio.2021.08.035 Link to full text
Abstract: Upconversion-mediated optogenetics is an emerging powerful technique to remotely control and manipulate the deep-tissue protein functions and signaling pathway activation. This technique uses lanthanide upconversion nanoparticles (UCNPs) as light transducers and through near-infrared light to indirectly activate the traditional optogenetic proteins. With the merits of high spatiotemporal resolution and minimal invasiveness, this technique enables cell-type specific manipulation of cellular activities in deep tissues as well as in living animals. In this review, we introduce the latest development of optogenetic modules and UCNPs, with emphasis on the integration of UCNPs with cellular optogenetics and their biomedical applications on the control of neural/brain activity, cancer therapy and cardiac optogenetics in vivo. Furthermore, we analyze the current developed strategies to optimize and advance the upconversion-mediated optogenetics and discuss the remaining challenges of its further applications in biomedical study and clinical translational research. STATEMENT OF SIGNIFICANCE: Optogenetics harnesses photoactivatable proteins to optically stimulate and control intracellular activities. UCNPs-mediated NIR-activatable optogenetics uses lanthanide upconversion nanoparticles (UCNPs) as light transducers and utilizes near-infrared (NIR) light to indirectly activate the traditional optogenetic proteins. The integration of UCNPs with cellular optogenetics has showed great promise in biomedical applications in regulating neural/brain activity, cancer therapy and cardiac optogenetics in vivo. The evolution and optimization of functional UCNPs and the discovery and engineering of novel optogenetic modules would both contribute to the advance of such unique hybrid technology, which may lead to discoveries in biomedical research and provide new treatments for human diseases.
48.

Interaction of tau with HNRNPA2B1 and N6-methyladenosine RNA mediates the progression of tauopathy.

blue CRY2olig HEK293T Neuro-2a primary mouse cortical neurons SH-SY5Y Organelle manipulation
Mol Cell, 20 Aug 2021 DOI: 10.1016/j.molcel.2021.07.038 Link to full text
Abstract: The microtubule-associated protein tau oligomerizes, but the actions of oligomeric tau (oTau) are unknown. We have used Cry2-based optogenetics to induce tau oligomers (oTau-c). Optical induction of oTau-c elicits tau phosphorylation, aggregation, and a translational stress response that includes stress granules and reduced protein synthesis. Proteomic analysis identifies HNRNPA2B1 as a principle target of oTau-c. The association of HNRNPA2B1 with endogenous oTau was verified in neurons, animal models, and human Alzheimer brain tissues. Mechanistic studies demonstrate that HNRNPA2B1 functions as a linker, connecting oTau with N6-methyladenosine (m6A) modified RNA transcripts. Knockdown of HNRNPA2B1 prevents oTau or oTau-c from associating with m6A or from reducing protein synthesis and reduces oTau-induced neurodegeneration. Levels of m6A and the m6A-oTau-HNRNPA2B1 complex are increased up to 5-fold in the brains of Alzheimer subjects and P301S tau mice. These results reveal a complex containing oTau, HNRNPA2B1, and m6A that contributes to the integrated stress response of oTau.
49.

Harnessing the power of fluorescence to characterize biomolecular condensates.

blue violet iLID Cryptochromes Fluorescent proteins Review
Methods Microbiol, 12 Aug 2021 DOI: 10.1016/bs.mim.2020.11.005 Link to full text
Abstract: Biomolecular condensates are membrane-less cellular compartments that form via phase separation. They serve a multitude of functions in all types of cells. Important insights into the composition, architecture and dynamics of biomolecular condensates have been obtained by harnessing the power of fluorescence-based technologies. In this chapter, methods will be discussed for (1) fluorescent labelling of macromolecules, (2) spatial and temporal mapping and tracking of target molecules in cellular and in vitro settings, (3) controlling formation and dissolution of biomolecular condensates, and (4) fluorescence-based condensate-targeted drug discovery.
50.

Photon Upconversion Hydrogels for 3D Optogenetics.

blue CRY2olig HeLa
Adv Funct Mater, 4 Jun 2021 DOI: 10.1002/adfm.202010907 Link to full text
Abstract: The ability to optically induce biological responses in 3D has been dwarfed by the physical limitations of visible light penetration to trigger photochemical processes. However, many biological systems are relatively transparent to low-energy light, which does not provide sufficient energy to induce photochemistry in 3D. To overcome this challenge, hydrogels that are capable of converting red or near-IR (NIR) light into blue light within the cell-laden 3D scaffolds are developed. The upconverted light can then excite optically active proteins in cells to trigger a photochemical response. The hydrogels operate by triplet–triplet annihilation upconversion. As proof-of-principle, it is found that the hydrogels trigger an optogenetic response by red/NIR irradiation of HeLa cells that have been engineered to express the blue-light sensitive protein Cry2olig. While it is remarkable to photoinduce the clustering of Cry2olig with blanket NIR irradiation in 3D, it is also demonstrated how the hydrogels trigger clustering within a single cell with great specificity and spatiotemporal control. In principle, these hydrogels may allow for photochemical control of cell function within 3D scaffolds, which can lead to a wealth of fundamental studies and biochemical applications.
Submit a new publication to our database